Abstract
We develop an optimal quantization approach for numerically solving nonlinear filtering problems associated with discrete-time or continuous-time state processes and discrete-time observations. Two quantization methods are discussed: a marginal quantization and a Markovian quantization of the signal process. The approximate filters are explicitly solved by a finite-dimensional forward procedure. A posteriori error bounds are stated, and we show that the approximate error terms are minimal at some specific grids that may be computed off-line by a stochastic gradient method based on Monte Carlo simulations. Some numerical experiments are carried out: the convergence of the approximate filter as the accuracy of the quantization increases and its stability when the latent process is mixing are emphasized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.