Abstract

In this paper, the problem of optimal quantization is solved for uniform distributions on some higher dimensional, not necessarily self-similar N-adic Cantor-like sets. The optimal codebooks are determined and the optimal quantization error is calculated. The existence of the quantization dimension is characterized and it is shown that the quantization coefficient does not exist. The special case of self-similarity is also discussed. The conditions imposed are a separation property of the distribution and strict monotonicity of the first N quantization error differences. Criteria for these conditions are proved and as special examples modified versions of classical fractal distributions are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.