Abstract
The term ‘corpus’ refers to a huge volume of structured datasets containing machine-readable texts. Such texts are generated in a natural communicative setting. The explosion of social media permitted individuals to spread data with minimal examination and filters freely. Due to this, the old problem of fake news has resurfaced. It has become an important concern due to its negative impact on the community. To manage the spread of fake news, automatic recognition approaches have been investigated earlier using Artificial Intelligence (AI) and Machine Learning (ML) techniques. To perform the medicinal text classification tasks, the ML approaches were applied, and they performed quite effectively. Still, a huge effort is required from the human side to generate the labelled training data. The recent progress of the Deep Learning (DL) methods seems to be a promising solution to tackle difficult types of Natural Language Processing (NLP) tasks, especially fake news detection. To unlock social media data, an automatic text classifier is highly helpful in the domain of NLP. The current research article focuses on the design of the Optimal Quad Channel Hybrid Long Short-Term Memory-based Fake News Classification (QCLSTM-FNC) approach. The presented QCLSTM-FNC approach aims to identify and differentiate fake news from actual news. To attain this, the proposed QCLSTM-FNC approach follows two methods such as the pre-processing data method and the Glove-based word embedding process. Besides, the QCLSTM model is utilized for classification. To boost the classification results of the QCLSTM model, a Quasi-Oppositional Sandpiper Optimization (QOSPO) algorithm is utilized to fine-tune the hyperparameters. The proposed QCLSTM-FNC approach was experimentally validated against a benchmark dataset. The QCLSTM-FNC approach successfully outperformed all other existing DL models under different measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Computer Systems Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.