Abstract
Multicollinearity among the predictor variables is a serious problem in regression analysis. There are some classes of biased estimators for solving the problem in statistical literature. In these biased classes, estimation of the shrinkage parameter plays an important role in data analyzing. Using eigenvalue analysis, efforts have been made to develop skills and methods for computing risk function of the estimators in regression models. A modified estimator based on the QR decomposition to combat the multicollinearity problem of design matrix is proposed in partially linear regression model which makes the data to be less distorted than the other methods. The necessary and sufficient condition for the superiority of the partially generalized QR-based estimator over partially generalized least-squares estimator for selecting the shrinkage parameter is obtained. Under appropriate assumptions, the asymptotic bias and variance of the proposed estimators are obtained. Also, a generalized cross validation (GCV) criterion is proposed for selecting the optimal shrinkage parameter and the bandwidth of the kernel smoother and then, an extension of the GCV theorem is established to prove the convergence of the GCV mean. Finally, the Monté-Carlo simulation studies and a real application related to electricity consumption data are conducted to support our theoretical discussion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.