Abstract
AbstractIn this paper, we study the optimal proportional reinsurance problem in a risk model with two dependent classes of insurance business, where the two claim number processes are correlated through a common shock component, and the criterion is to minimise the probability of drawdown, namely, the probability that the value of the surplus process reaches some fixed proportion of its maximum value to date. By the method of maximising the ratio of drift of a diffusion divided to its volatility squared, and the technique of stochastic control theory and the corresponding Hamilton–Jacobi–Bellman equation, we investigate the optimisation problem in two different cases. Furthermore, we constrain the reinsurance proportion in the interval [0,1] for each case, and derive the explicit expressions of the optimal proportional reinsurance strategy and the minimum probability of drawdown. Finally, some numerical examples are presented to show the impact of model parameters on the optimal results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.