Abstract
AbstractWe study an optimal reinsurance problem for a diffusion model, in which the drift of the claim follows an Ornstein–Uhlenbeck process. The aim of the insurer is to maximize the expected exponential utility of its terminal wealth. We consider two cases: full information and partial information. Full information occurs when the insurer directly observes the drift; partial information occurs when the insurer observes only its claims. By applying stochastic control and by solving the corresponding Hamilton–Jacobi–Bellman equations, we find the value function and the optimal reinsurance strategy under both full and partial information. We determine a relationship between the value function and reinsurance strategy under full information with the value function and reinsurance strategy under partial information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.