Abstract

The reduction of NO by CO over Rb-promoted Pt/γ-Al2O3 catalysts has been investigated over a wide range of temperature (ca. 200–500°C), partial pressures of reactants and promoter loadings. For purposes of comparison, K- and Cs-promoted Pt/γ-Al2O3 catalysts were tested under the same conditions. Rubidium strongly enhanced both catalytic activity and N2-selectivity. Rate increases by factors as high as 110 and 45 for the production of N2 and CO2, respectively, relative to unpromoted Pt were obtained, accompanied by substantial increase in N2-selectivity (e.g. from 24 to 82% at 350°C and [CO]=0.5%, [NO]=1%). Under stoichiometric conditions, Rb-promoted catalysts gave 100% conversion of both reactants with 100% selectivity towards N2 at T∼350°C and at an effective reactant contact time of only ∼0.5s. In contrast, under the same conditions unpromoted Pt delivered <30% conversion and poor N2-selectivity (approximately <40%); even at 480°C the conversion was only ∼60%. The observed promotional effects are ascribed to alkali-induced changes in the chemisorption bond strengths of CO, NO and NO dissociation products which lead to the observed activity enhancement and dependence of N2-selectivity on promoter loading. The effects of K-promotion mirror those of Rb-promotion, but are significantly less pronounced. Rb is the best alkali promoter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.