Abstract

BackgroundReducing Maternal Mortality Rate (MMR) is considered by the international community as one of the eight Millennium Development Goals. Based on previous studies, Skilled Assistant at Birth (SAB), General Fertility Rate (GFR) and Gross Domestic Product (GDP) have been identified as the most significant predictors of MMR in South Sudan.This paper aims for the first time to develop profile limits for the MMR in terms of significant predictors SAB, GFR, and GDP. The paper provides the optimal values of SAB and GFR for a given MMR level.MethodsLogarithmic multi- regression model is used to model MMR in terms of SAB, GFR and GDP. Data from 1986 to 2015 collected from Juba Teaching Hospital was used to develop the model for predicting MMR. Optimization procedures are deployed to attain the optimal level of SAB and GFR for a given MMR level.MATLAB was used to conduct the optimization procedures. The optimized values were then used to develop lower and upper profile limits for yearly MMR, SAB and GFR.ResultsThe statistical analysis shows that increasing SAB by 1.22% per year would decrease MMR by 1.4% (95% CI (0.4–5%)) decreasing GFR by 1.22% per year would decrease MMR by 1.8% (95% CI (0.5–6.26%)).The results also indicate that to achieve the UN recommended MMR levels of minimum 70 and maximum 140 by 2030, the government should simultaneously reduce GFR from the current value of 175 to 97 and 75, increase SAB from the current value of 19 to 50 and 76.ConclusionsThis study for the first time has deployed optimization procedures to develop lower and upper yearly profile limits for maternal mortality rate targeting the UN recommended lower and upper MMR levels by 2030. The MMR profile limits have been accompanied by the profile limits for optimal yearly values of SAB and GFR levels. Having the optimal level of predictors that significantly influence the maternal mortality rate can effectively aid the government and international organizations to make informed evidence-based decisions on resources allocation and intervention plans to reduce the risk of maternal death.

Highlights

  • Reducing Maternal Mortality Rate (MMR) is considered by the international community as one of the eight Millennium Development Goals

  • The optimal profile limits provide a quantitative guide-line for the government and partners in terms of yearly Skilled Assistant at Birth (SAB) and General Fertility Rate (GFR) targets in order to reduce maternal mortality rate (MMR) to the level recommended by the UN agencies [4]

  • The statistical analysis shows that increasing SAB by 1.22% per year would decrease MMR by 1.4% (95% CI (0.4–5%)) while decreasing GFR by 1.22% per year would decrease MMR by 1.8% (95% CI (0.5–6.26%))

Read more

Summary

Introduction

Reducing Maternal Mortality Rate (MMR) is considered by the international community as one of the eight Millennium Development Goals. Based on previous studies, Skilled Assistant at Birth (SAB), General Fertility Rate (GFR) and Gross Domestic Product (GDP) have been identified as the most significant predictors of MMR in South Sudan. This paper aims for the first time to develop profile limits for the MMR in terms of significant predictors SAB, GFR, and GDP. Improving maternal health and reducing related mortality has been the key concern of the international community as one of the Eight Millennium Development Goals (MDG) [1]. Makuei et al BMC Pregnancy and Childbirth (2018) 18:278 population of around 13 million Out of these facilities, only 37 are hospitals. All the above factors affect the total health care system and in particular the high maternal mortality rate problem

Objectives
Methods
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.