Abstract

Rhodococcus sp. has a broad catabolic diversity and unique enzymatic capabilities, and it is able to adapt under extreme conditions. Thereby, the production of this remarkable bacterium has a great biotechnological and industrial importance. In this sense, we sought to improve the R. erythropolis ATCC 4277 growth through a central composite design, by varying the components of nutrient medium (glucose, malt extract, yeast extract, CaCO3), temperature, and agitation. It was found that the concentrations of glucose and malt extract are not statistically significant, being reduced of 4.0 and 10.0 g L-1 to 2.0 and 5.0gL-1, respectively. The CaCO3 concentration and temperature were also diminished of 2.0 to 1.16gL-1and 28 to 23.7°C, respectively. Optimal growth conditions provided a 240% increase in final biomass concentration, an increment in specific growth rate, and a growth yield coefficient about five times greater. Application of the optimal conditions in biodesulfurization and biodenitrogenation processes showed that desulfurization capability is not associated with optimal growth conditions; however, it was achieved a 47% of nitrogen removal in the assay containing 10% (w/w) of heavy gas oil. Graphical Abstract ᅟ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.