Abstract

Steady-state and dynamic simulations of a hydrocracking fractionator are carried out using the process simulator ASPEN PLUS with industrial process data. The main products of fractionation include naphtha, diesel, and tail oil. To obtain more economic benefits, more naphtha must be produced in a refinery because naphtha is more profitable than other products. Thus, optimizing the hydrocracking process is important. Optimization is often challenging to implement because the product quality of naphtha (dry point) is difficult to measure online by sensors. The product quality of naphtha is sampled and analyzed by experimental ASTM D86 curves in the laboratory, so the measured value will be delayed. To solve this problem, a model of naphtha dry point (NDP) is established by artificial neural networks using simulation results. This NDP model is then used as a soft sensor and applied in an optimal quality control strategy. The online soft sensor and optimal quality control strategy are integrated by MATLAB CAPE-OPEN and ASPEN PLUS with an OLE for Process Control server. The increase of naphtha yield is obvious with the use of the proposed method. Several key factors influencing naphtha yield are investigated using the optimal quality control strategy by dynamic simulation, and the results show excellent system robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.