Abstract
Marginal structural Cox models have been used to estimate the causal effect of a time-varying treatment on a survival outcome in the presence of time-dependent confounders. These methods rely on the positivity assumption, which states that the propensity scores are bounded away from zero and one. Practical violations of this assumption are common in longitudinal studies, resulting in extreme weights that may yield erroneous inferences. Truncation, which consists of replacing outlying weights with less extreme ones, is the most common approach to control for extreme weights to date. While truncation reduces the variability in the weights and the consequent sampling variability of the estimator, it can also introduce bias. Instead of truncated weights, we propose using optimal probability weights, defined as those that have a specified variance and the smallest Euclidean distance from the original, untruncated weights. The set of optimal weights is obtained by solving a constrained quadratic optimization problem. The proposed weights are evaluated in a simulation study and applied to the assessment of the effect of treatment on time to death among people in Sweden who live with human immunodeficiency virus and inject drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.