Abstract

We construct binary codes for fingerprinting digital documents. Our codes for n users that are ϵ-secure against c pirates have length O ( c 2 log( n /ϵ)). This improves the codes proposed by Boneh and Shaw [1998] whose length is approximately the square of this length. The improvement carries over to works using the Boneh--Shaw code as a primitive, for example, to the dynamic traitor tracing scheme of Tassa [2005]. By proving matching lower bounds we establish that the length of our codes is best within a constant factor for reasonable error probabilities. This lower bound generalizes the bound found independently by Peikert et al. [2003] that applies to a limited class of codes. Our results also imply that randomized fingerprint codes over a binary alphabet are as powerful as over an arbitrary alphabet and the equal strength of two distinct models for fingerprinting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.