Abstract

Renewable energy sources, such as wind and solar, are positioned to play a pivotal role in future energy systems. In this paper, we propose a mathematical model for calculating and regularly updating the next preventive maintenance plan for a wind farm. Our optimization criterion considers various factors, including the current ages of key components, major maintenance costs, eventual energy production losses, and available data monitoring the condition of the wind turbines. Employing Cox proportional hazards analysis, we develop a comprehensive approach that accounts for the current ages of critical components, significant maintenance costs, potential energy production losses, and data collected from monitoring the condition of wind turbines. We illustrate the effectiveness of our approach through a case study based on data collected from multiple wind farms in Sweden. Our results demonstrate that preventive maintenance planning yields positive effects, particularly when the wind turbine components in question have significantly shorter lifespans than the turbine itself.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.