Abstract

The present study considers the optimal pre-tensioning design of lattice structures forming composite cable-stayed bridges. With reference to a model problem, a target bending moment distribution over the longitudinal beams is identified, with the aim of achieving an optimized use of the material composing the bridge. Next, a procedure for the optimization of cable forces is developed, in order to achieve the desired bending moment distribution through the application of a self-equilibrated state of stress induced by optimal cable pre-tensioning. Results indicate that the given design approach is suitable for the optimization of the pre-tensioning sequence of arbitrary composite cable-stayed bridges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call