Abstract

BackgroundLiquid chromatography mass spectrometry (LC-MS) maps in shotgun proteomics are often too complex to select every detected peptide signal for fragmentation by tandem mass spectrometry (MS/MS). Standard methods for precursor ion selection, commonly based on data dependent acquisition, select highly abundant peptide signals in each spectrum. However, these approaches produce redundant information and are biased towards high-abundance proteins.ResultsWe present two algorithms for inclusion list creation that formulate precursor ion selection as an optimization problem. Given an LC-MS map, the first approach maximizes the number of selected precursors given constraints such as a limited number of acquisitions per RT fraction. Second, we introduce a protein sequence-based inclusion list that can be used to monitor proteins of interest. Given only the protein sequences, we create an inclusion list that optimally covers the whole protein set. Additionally, we propose an iterative precursor ion selection that aims at reducing the redundancy obtained with data dependent LC-MS/MS. We overcome the risk of erroneous assignments by including methods for retention time and proteotypicity predictions. We show that our method identifies a set of proteins requiring fewer precursors than standard approaches. Thus, it is well suited for precursor ion selection in experiments with limited sample amount or analysis time.ConclusionsWe present three approaches to precursor ion selection with LC-MALDI MS/MS. Using a well-defined protein standard and a complex human cell lysate, we demonstrate that our methods outperform standard approaches. Our algorithms are implemented as part of OpenMS and are available under http://www.openms.de.

Highlights

  • Liquid chromatography mass spectrometry (LC-MS) maps in shotgun proteomics are often too complex to select every detected peptide signal for fragmentation by tandem mass spectrometry (MS/MS)

  • The resulting peptide mixture is inserted into a liquid chromatography (LC) column in which the peptides are eluted at different time points, called retention time (RT), according to their physicochemical properties

  • Protein sequence-based inclusion list In the last section, we developed a method for inclusion list creation based on LC-MS feature maps

Read more

Summary

Introduction

Liquid chromatography mass spectrometry (LC-MS) maps in shotgun proteomics are often too complex to select every detected peptide signal for fragmentation by tandem mass spectrometry (MS/MS). Standard methods for precursor ion selection, commonly based on data dependent acquisition, select highly abundant peptide signals in each spectrum. These approaches produce redundant information and are biased towards high-abundance proteins. A problem for protein identification with tandem mass spectrometry is the limited number of possible MS/MS acquisitions. The number of possible fragmentations is either limited by the elution time of the peptide (ESI) or by the amount of sample available for each fraction (MALDI). A standard method for precursor ion selection with ESI-MS/MS is data dependent acquisition (DDA) which selects the x most intense signals in each MS spectrum for fragmentation, with x depending on the instrument type. As biological samples have a high dynamic range of protein abundance, the number of peptide identifications is biased towards high-abundance proteins, low-abundance proteins are mostly of higher interest

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.