Abstract

The optimal power flow (OPF) problem seeks to control power generation/demand to optimize certain objectives such as minimizing the generation cost or power loss. Direct current (DC) networks (e.g., DC-microgrids) are promising to incorporate distributed generation. This paper focuses on the OPF problem in DC networks. The OPF problem is nonconvex, and we study solving it via a second-order cone programming (SOCP) relaxation. In particular, we prove that the SOCP relaxation is exact if there are no voltage upper bounds, and that the SOCP relaxation has at most one solution if it is exact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.