Abstract
Optimal power allocation for secure estimation of multiple deterministic parameters is investigated under a total power constraint. The goal is to minimize the Cramer-Rao lower bound (CRLB) at an intended receiver while keeping estimation errors at an eavesdropper above specified target levels. To that end, an optimization problem is formulated by considering measurement models involving linear transformation of the parameter vector and additive Gaussian noise. Although the proposed optimization problem is nonconvex, it is decomposed into convex sub-problems by utilizing the structure of the secrecy constraints. Then, optimal solutions to the sub-problems are characterized via optimization theoretic approaches. An algorithm utilizing that characterization is developed to obtain the optimal solution of the proposed problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.