Abstract

In this paper, we derive and optimize the total throughput of non orthogonal multiple access (NOMA) with energy harvesting. The source S harvests energy from radio frequency signal received from node A. The source uses the harvested energy to transmit data to N NOMA users classified using instantaneous or average power of channel gains. We optimize the powers allocated to NOMA users and harvesting duration to maximize the total throughput. We also derive packet waiting time and total delays for all NOMA users. We optimize powers allocated to NOMA users and harvesting duration to minimize a combination of total delays of all users. Our results are valid for Nakagami channels with arbitrary positions of users.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.