Abstract

We study portfolio investment problem from a probabilistic modeling perspective and study how an investor should distribute wealth over two assets in order to maximize the cumulative wealth. We construct portfolios that provide the optimal growth in i.i.d. discrete time two-asset markets under proportional transaction costs. As the market model, we consider arbitrary discrete distributions on the price relative vectors. To achieve optimal growth, we use threshold portfolios. We demonstrate that under the threshold rebalancing framework, the achievable set of portfolios elegantly form an irreducible Markov chain under mild technical conditions. We evaluate the corresponding stationary distribution of this Markov chain, which provides a natural and efficient method to calculate the cumulative expected wealth. Subsequently, the corresponding parameters are optimized using a brute force approach yielding the growth optimal portfolio under proportional transaction costs in i.i.d. discrete-time two-asset markets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.