Abstract

We derive the optimal portfolio for an expected utility maximizer whose utility does not only depend on terminal wealth but also on some random benchmark (state-dependent utility). We then apply this result to obtain the optimal portfolio of a loss-averse investor with a random reference point (extending a result of Berkelaar et al. 2004). Clearly, the optimal portfolio has some joint distribution with the benchmark and we show that it is the cheapest possible in having this distribution. This characterization result allows us to infer the state-dependent utility function that explains the demand for a given (joint) distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.