Abstract

Many empirical studies have shown that financial asset returns do not always exhibit Gaussian distributions, for example hedge fund returns. The introduction of the family of Johnson distributions allows a better fit to empirical financial data. Additionally, this class can be extended to a quite general family of distributions by considering all possible regular transformations of the standard Gaussian distribution. In this framework, we consider the portfolio optimal positioning problem, which has been first addressed by Brennan and Solanki [J. Financial Quant. Anal., 1981, 16, 279–300], Leland [J. Finance, 1980, 35, 581–594] and further developed by Carr and Madan [Quant. Finance, 2001, 1, 9–37] and Prigent [Generalized option based portfolio insurance. Working Paper, THEMA, University of Cergy-Pontoise, 2006]. As a by-product, we introduce the notion of Johnson stochastic processes. We determine and analyse the optimal portfolio for log return having Johnson distributions. The solution is characterized for arbitrary utility functions and illustrated in particular for a CRRA utility. Our findings show how the profiles of financial structured products must be selected when taking account of non Gaussian log-returns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.