Abstract

Based on the Lie symmetry method, we derive the explicit optimal invest strategy for an investor who seeks to maximize the expected exponential (CARA) utility of the terminal wealth in a defined-contribution pension plan under a constant elasticity of variance model. We examine the point symmetries of the Hamilton-Jacobi-Bellman (HJB) equation associated with the portfolio optimization problem. The symmetries compatible with the terminal condition enable us to transform the (2 + 1)-dimensional HJB equation into a (1 + 1)-dimensional nonlinear equation which is linearized by its infinite-parameter Lie group of point transformations. Finally, the ansatz technique based on variables separation is applied to solve the linear equation and the optimal strategy is obtained. The algorithmic procedure of the Lie symmetry analysis method adopted here is quite general compared with conjectures used in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.