Abstract
This paper investigates continuous-time optimal portfolio and consumption problems under loss aversion in an infinite time horizon. The investor's goal is to choose the optimal portfolio and consumption policies to maximize total discounted S-shaped utility from consumption. The problems are solved under two different situations respectively for the reference level: exogenous or endogenous. For the case of exogenous reference level, which is independent of the consumption policy, the optimal consumption policy and wealth process are obtained through the martingale method and replicating technique. For the case of endogenous reference level, which is related to the past actual consumption, the optimization problem with stochastic reference level is first transformed into an equivalent optimization problem with zero reference point, the corresponding relationship between them is proved, and then the relevant optimal consumption policy and wealth process are also obtained. When the investment opportunity sets are constants, the closed-form solutions of the portfolio and consumption policies are derived under two different situations respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Probability in the Engineering and Informational Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.