Abstract

Low-power wide-area network (LPWAN) technologies enable Internet of Things (IoT) devices to efficiently and robustly communicate over long distances, thus making them especially suited for industrial environments. However, the stringent regulations on the usage of certain industrial, scientific, and medical bands in many countries in which LPWAN operate limit the amount of time IoT motes can occupy the shared bands. This is particularly challenging in industrial scenarios, where not being able to report some detected events might result in the failure of critical assets. To alleviate this, and by mathematically modeling LPWAN-based IoT motes, we have derived optimal transmission policies that maximize the number of reported events (prioritized by their importance) while still complying with current regulations. The proposed solution has been customized for two widely known LPWAN technologies: 1) LoRa and 2) Sigfox. Analytical results reveal that our solution is feasible and performs remarkably close to the theoretical limit for a wide range of network activity patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.