Abstract

We study the scheduling of large-scale electric vehicle (EV) charging in a power distribution network under random renewable generation and electricity prices. The problem is formulated as a stochastic dynamic program with unknown state transition probability. To mitigate the curse of dimensionality, we establish the nodal multi-target (NMT) characterization of the optimal scheduling policy: all EVs with the same deadline at the same bus should be charged to approach a single target of remaining energy demand. We prove that the NMT characterization is optimal under arbitrarily random system dynamics. To adaptively learn the dynamics of system uncertainty, we propose a model-free soft-actor-critic (SAC) based method to determine the target levels for the characterized NMT policy. The proposed SAC + NMT approach significantly outperforms existing deep reinforcement learning methods (in our numerical experiments on the IEEE 37-node test feeder), as the established NMT characterization sharply reduces the dimensionality of neural network outputs without loss of optimality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.