Abstract
In many production/inventory systems, not only is the production/inventory capacity finite, but the systems are also subject to random production yields that are influenced by factors such as breakdowns, repairs, maintenance, learning, and the introduction of new technologies. In this paper, we consider a single-item, single-location, periodic-review model with finite capacity and Markov modulated demand and supply processes. When demand and supply processes are driven by two independent, discrete-time, finite-state, time-homogeneous Markov chains, we show that a modified, state-dependent, inflated base-stock policy is optimal for both the finite and infinite horizon planning problems. We also show that the finite-horizon solution converges to the infinite-horizon solution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.