Abstract

Consider the problem of estimating the value of a functional $\Lambda(f)$ for $f$ an unknown density or regression function. The straightforward plug-in estimator $\Lambda(\hat f)$ with $\hat f$ a particular estimate of $f$ achieves the optimal rate of convergence in the sense of Stone over bounded subsets of a Sobolev space for a broad class of linear and nonlinear functionals. For many functionals the rate calculation depends on a Frechet-like derivative of the functional, which may be obtained using elementary calculus. For some classes of functionals, $\hat f$ is undersmoothed relative to what would be used to estimate $f$ optimally. Examples for which a plug-in estimator is optimal include $L^q$ norms of regression or density functions and their derivatives and the expected integrated squared bias. When interested in computing estimates over classes of functions which satisfy certain restrictions, such as strict positivity or boundary conditions, the plug-in estimator may or may not be optimal, depending on the functional and the function class. The functional calculus establishes conditions under which the plug-in estimator remains optimal, and sometimes suggests an appropriate modification when it does not.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.