Abstract
This paper considers play in a two-person zero-sum differential game where the dynamics are given by a differential equation with additive white noise. Feedback strategies are employed. Standard results from control theory show that the maximizing player has an optimal response to any pre-announced strategy of the minimizing player. Here it is shown that the minimizing player can achieve the upper value of the game by playing a strategy which is constructed by performing a pointwise min-max on a certain fixed Hamiltonian function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.