Abstract
In recent times renewable energy sources have become an integral part of the modern power grid. As a result, the overall system inertia of the grid has been reduced, thus leading to frequency instability issues such as fast rate of change of frequency. Thus, to compensate for the declining inertia, it is important to carefully select renewable energy generators (REGs) and energy storage systems (ESS) in order to ensure the stability of the power grid, while also controlling greenhouse gases emissions in line with environmental standards. Therefore, this paper proposes an optimal planning model of REGs and ESS, considering the inertia requirement of the grid. The objective function is formulated to minimize the cost of operation, emissions, and investment in new REGs and energy storage units while maximizing the system inertia. The model was developed as a mixed integer linear programming problem and solved using CPLEX solver in GAMS. Finally, the model was validated using a modified IEEE 9-bus system and compared under three scenarios. The results show that in scenario 3 where system inertia is considered in the presence of REGs and ESS, higher system inertia of 8.776 s was achieved at minimal emission and cost, which justifies the aim of the study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Technology and Economics of Smart Grids and Sustainable Energy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.