Abstract

Parking is a crucial element of the driving experience in urban transportation systems. Especially in the coming era of Shared Autonomous Vehicles (SAVs), parking operations in urban transportation networks may inevitably change. Parking stations are likely to serve as storage places for unused vehicles and depots that control the level-of-service of SAVs. This study presents an Analytical Parking Planning Model (APPM) for the SAV environment to provide broader insights into parking planning decisions. Two specific planning scenarios are considered for the APPM: (i) Single-zone APPM (S-APPM), which considers the target area as a single homogeneous zone, and (ii) Two-zone APPM (T-APPM), which considers the target area as two different zones, such as city center and suburban area. S-APPM offers a closed-form solution to find the optimal density of parking stations and parking spaces and the optimal number of SAV fleets, which is beneficial for understanding the explicit relationship between planning decisions and the given environments, including demand density and cost factors. In addition, to incorporate different macroscopic characteristics across two zones, T-APPM accounts for inter- and intra-zonal passenger trips and the relocation of vehicles. We conduct a case study to demonstrate the proposed method with the actual data collected in Seoul Metropolitan Area, South Korea. We find that the optimal densities of parking stations and spaces in the target area are much lower than the current situation. Sensitivity analyses with respect to cost factors are performed to provide decision-makers with further insights.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.