Abstract
In this contribution, we introduce a stochastic framework for decision support for optimal planning and operation of water supply in irrigation. This consists of (1) a weather generator for simulating regional impacts of climate change on the basis of IPCC scenarios, (2) a tailor-made evolutionary optimization algorithm for optimal irrigation scheduling with limited water supply, (3) a mechanistic model for simulating water transport and crop growth in a sound manner, and (4) a kernel density estimator for estimating stochastic productivity, profit, and demand functions by a nonparametric method. As a result of several simulation/optimization runs within the framework, we present stochastic crop-water production functions (SCWPF) for different crops which can be used as a basic tool for assessing the impact of climate variability on the risk for the potential yield for specific crops and specific agricultural areas. A case study for an agricultural area in the Al Batinah region of the Sultanate of Oman is used to illustrate these methodologies. In addition, microeconomic impacts of climate change and the vulnerability of the agro-ecological system are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.