Abstract

Public buildings play a significant role in carbon emissions reduction and building energy conservation. This study establishes a simulation model for an existing public building in China's hot summer and cold winter areas. It applies the global sensitivity analysis model to obtain the optimally combined strategy of energy-saving renovation, including users' behavior and other parameters' changes. Finally, this study implements a time-of-use (TOU) pricing strategy through the demand response function, and obtains an optimization plan for energy conservation and CO2 emission reduction. Results show that in the combined strategy, on a typical day in summer, energy consumption, carbon emissions and energy expenditure of users are reduced by 24.5%. Moreover, in the TOU pricing strategy, the energy consumption and carbon emissions are reduced by 26.4%, and the energy expenditure of users is reduced by 26.1%. In summary, considering users' comfort, energy consumption, and economy, adopting the TOU pricing strategy is beneficial to load response and adjusting power supply volatility. Moreover, it reduces the electricity cost of users and the maintenance cost of the power supply bureau. This study provides new ideas for energy conservation and CO2 emissions reduction in existing public buildings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call