Abstract

Controlling the dynamics of chaotic systems is a task which is often addressed in an empirical way, particularly for placing sensors and actuators. Here, we show that selecting the measured variable and placing the actuator can be guided by considering the observability and controllability symbolic coefficients and applying the notion of flatness. This approach is here demonstrated on the piecewise linear Chua circuit, whose specific features are leveraged in constructing a discretized controller with a switch mechanism and optimally placed sensor and actuator. The feedback linearization is compared to a homogeneous and a passivity-based control laws, the flat control laws being more efficient than the others. It is thus shown that the proposed flat control law by feedback linearization is very efficient. The continuous time and discretized Chua circuit, governed by differential and difference equations, respectively, are treated. Most likely, these results could be extendable to a large group of natural and experimental systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call