Abstract
This study aims to explore the optimal location of flexible ureteral access sheath (f-UAS) in retrograde intrarenal lithotripsy (RIRS). RIRS model was built by AutoCAD 2011 software, and imported COMSOL 5.6 software to computer simulation. An RIRS model was constructed in vitro to analyze the distribution pattern of stone fragments and compare the weight of stone fragments carried out by the irrigation fluid when the f-UAS is in different positions. Computer simulation showed that the highest flow of irrigation fluid was in the channel of flexible ureteroscopy (f-URS) and in the lumen of f-UAS. From the f-URS to the renal collection system and then to the f-UAS, the velocity of irrigation fluid changes gradually from high-flow to low-flow and then to high-flow. When the f-URS and the f-UAS are at the same level, the irrigation fluid is always at a state of high flow during the process from f-URS to f-UAS. When the f-URS and the f-UAS are at the same level, it can increase the local intrarenal pressure (IRP) at the front of f-URS. The stone fragments are mainly sediment in the low-flow region of irrigation fluid. More stone fragments could follow the irrigation fluid out of the body when the tip of f-URS and the tip of f-UAS are at the same level (P < 0.001). The f-UAS should be brought closer to the stone in RIRS. And more stone fragments can be taken out of the body by the effect of irrigation fluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.