Abstract

Shape control is a critical task in the composite fuselage assembly process due to the dimensional variabilities of incoming fuselages. To realize fuselage shape adjustment, actuators are used to pull or push several points on a fuselage. Given a fixed number of actuators, the locations of actuators on a fuselage will impact on the effectiveness of shape control. Thus, it is important to determine the optimal placement of actuators in the fuselage shape control problem. In current practice, the actuators are placed with equal distance along the edge of a fuselage without considering its incoming dimensional shape. Such practice has two limitations: (1) it is non-optimal and (2) larger actuator forces may be applied for some locations than needed. This paper proposes an optimal actuator placement methodology for efficient composite fuselage shape control by developing a sparse learning model and corresponding parameter estimation algorithm. The case study shows that our proposed method achieves the optimal actuator placement for shape adjustments of the composite fuselage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.