Abstract

The paper optimizes the placement of soft open points (SOPs) devices, shunt capacitor banks (SCBs), and distributed generators (DGs) in the IEEE 69-node distribution power grid for reducing the power loss of a single hour and total energy losses of one year. EO is proven to be more effective than previous methods and three other applied algorithms, including the Coot optimization algorithm (COOT), Modified weight inertia factor and modified acceleration coefficients-based particle swarm optimization (CFPSO), and Tunicate swarm algorithm (TSA). So, EO is applied for the last case considering one SOPs, one wind turbine (WT), two solar photovoltaic systems (PVs), and two SCBs over one year with twelve months and 24 h each month. The study reaches the smallest power loss compared to previous studies in the first case with one SOPs device. The results from the second to the fourth cases indicate that the power grid needs the placement of SCBs and DGs first and SOPs devices to reach the lowest power loss. Case 5 indicates that the hybrid system with one WT and two PVs suffers higher power losses than the base system at hours with high generation from renewable sources; however, integrating the SOPs and SCBs into the hybrid system can reach smaller losses than the base system at these hours. Thus, using SOPs and SCBs in integrated distribution power grids with renewable energies can greatly benefit energy loss reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.