Abstract
We design an optimal pipe diameter sizing in a tree-structured natural gas network. Design of pipeline, facility and equipment systems are necessary tasks to configure an optimal natural gas network. A mixed-integer programming model is formulated to minimise the total cost in the network. The aim is to optimise pipe diameter sizes so that the location-allocation cost is minimised. Pipeline systems in natural gas network must be designed based on gas flow rate, length of pipe, gas maximum drop pressure allowance and gas maximum velocity allowance. We use information based on relationship among gas flow rates and pipe diameter sizes considering gas pressure and velocity restrictions. We apply the minimum spanning tree technique to obtain a network with minimum number of arcs, no cycles and all the spanned nodes. A case study in Mazandaran Gas Company in Iran is conducted to illustrate the validity of the proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Industrial and Systems Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.