Abstract

The relationship between the perfusion flow rate and cerebral oxygen consumption during deep hypothermic cardiopulmonary bypass at 20 degrees C was investigated in dogs. In 10 dogs the perfusion flow rate was decreased in steps from 100 to 60, 30, and 15 ml/kg/min every 30 minutes. Although cerebral blood flow decreased as perfusion flow rate decreased, the ratio of cerebral blood flow to the perfusion flow rate increased significantly (p less than 0.05) at a perfusion flow rate of 15 ml/kg/min compared to that at a perfusion flow rate of 100 or 60 ml/kg/min. The arterial-sagittal sinus blood oxygen content difference increased as perfusion flow rate decreased. Consequently, cerebral oxygen consumption did not vary significantly at perfusion flow rates of 100 (0.48 +/- 0.10), 60 (0.43 +/- 0.14), and 30 ml/kg/min (0.44 +/- 0.12 ml/100 gm/min), and it decreased significantly to 0.31 +/- 0.22 ml/100 gm/min at a perfusion flow rate of 15 ml/kg/min. In five dogs the perfusion flow rate was decreased in one step from 100 to 15 ml/kg/min, and after 60 minutes' perfusion at a perfusion flow rate of 15 ml/kg/min, the perfusion flow rate was returned to 100 ml/kg/min. Cerebral oxygen consumption decreased significantly during 60 minutes' perfusion at a perfusion flow rate of 15 ml/kg/min and did not return to its initial value after the perfusion flow rate was returned to 100 ml/kg/min. These data indicate that the optimal perfusion flow rate for the brain during deep hypothermic cardiopulmonary bypass at 20 degrees C appears to be 30 ml/kg/min, with a possible oxygen debt in the brain resulting in anaerobic metabolism if the perfusion flow rate is kept at 15 ml/kg/min or less.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call