Abstract
Air conditioning is viewed as a major energy consuming area in domestic and industrial applications. However energy conservation is effectively possible in air conditioners by employing an intercooler with nanofluids, which can consequently reduce the compressor load. This paper presents an investigative report on the performance of proposed energy efficient air conditioning system. A binary mixture of ethylene glycol (C2H6O2) and water is used as the base fluid in the shell and coil type heat exchanger (SCHE). The volume concentration of C2H6O2 in base fluid, type of suspended nano particles (Al2O3 and MgO), flow rate of nanofluid at shell side of intercooler and the volume fraction of nano particles are chosen for experimentation designed using Taguchi L18 orthogonal array. The coefficient of performance (COP) of the nanofluid-based domestic air conditioner is estimated as the performance index (response). Quadratic model and response surface plots are generated to observe the effects of inputs on the COP. The nano particles of MgO (0.75%v/v), suspended in a binary mixture with 28.65% C2H6O2 is found to improve the system performance (COP) at a nanofluid flow rate of 2.42 LPM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of New Materials for Electrochemical Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.