Abstract

In this paper, we study optimal deployment in terms of the number of sensors required to achieve four-connectivity and full coverage under different ratios of sensors' communication range (denoted by r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> ) to their sensing range (denoted by r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> ). We propose a new pattern, the Diamond pattern, which can be viewed as a series of evolving patterns. When r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> /r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> ¿ ¿(3), the Diamond pattern coincides with the well-known triangle lattice pattern; when r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> /r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> ¿ ¿(2), it degenerates to a Square pattern (i.e., a square grid). We prove that our proposed pattern is asymptotically optimal when r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> /r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> > ¿(2) to achieve four-connectivity and full coverage. We also discover another new deployment pattern called the Double-strip pattern. This pattern provides a new aspect to research on optimal deployment patterns. Our work is the first to propose an asymptotically optimal deployment pattern to achieve four-connectivity and full coverage for WSNs. Our work also provides insights on how optimal patterns evolve and how to search for them.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call