Abstract

In transport problems of Monge's types, the total cost of a transport map is usually an integral of some function of the distance, such as |x - y|p. In many real applications, the actual cost may naturally be determined by a transport path. For shipping two items to one location, a "Y shaped" path may be preferable to a "V shaped" path. Here, we show that any probability measure can be transported to another probability measure through a general optimal transport path, which is given by a vector measure in our setting. Moreover, we define a new distance on the space of probability measures which in fact metrizies the weak * topology of measures. Under this distance, the space of probability measures becomes a length space. Relations as well as related problems about transport paths and transport plans are also discussed in the end.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.