Abstract

We analyze the statistics of the shortest and fastest paths on the road network between randomly sampled end points. We find that, to a good approximation, the optimal paths can be described as directed polymers in a disordered medium, which belong to the Kardar-Parisi-Zhang universality class of interface roughening. Comparing the scaling behavior of our data with simulations of directed polymers and previous theoretical results, we are able to point out the few characteristics of the road network that are relevant to the large-scale statistics of optimal paths. Indeed, we show that the local structure is akin to a disordered environment with a power-law distribution which become less important at large scales where long-ranged correlations in the network control the scaling behavior of the optimal paths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.