Abstract

This paper deals with the search of optimal paths in a multi-stage stochastic decision network as a first application of the deterministic approximation approach proposed by Tadei et al. [48]. In the network, the involved utilities are stage-dependent and contain random oscillations with an unknown probability distribution. The problem is modeled as a sequential choice of nodes in a graph layered into stages, in order to find the optimal path value in a recursive fashion. It is also shown that an optimal path solution can be derived by using a Nested Multinomial Logit model, which represents the choice probability at the different stages. The accuracy and efficiency of the proposed method are experimentally proved on a large set of randomly generated instances. Moreover, insights on the calibration of a critical parameter of the deterministic approximation are also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.