Abstract
Optimal path planning under full state and map knowledge is often accomplished using some variant of Dijkstra's algorithm, despite the fact that it represents the path domain as a discrete graph rather than as a continuous space. In this paper we compare Dijkstra's discrete algorithm with a variant (often called the fast marching method) which more accurately treats the underlying continuous space. Analytically, both generate a value function free of local minima, so that optimal path generation merely requires gradient descent. We also investigate the use of optimality metrics other than Euclidean distance for both algorithms. These different norms better represent optimal paths for some types of problems, as demonstrated by planning optimal collision-free paths for a multiple robot scenario. When considering approximations consistent with the underlying state space, our conclusion is that fast marching places fewer constraints upon grid connectivity, and that it achieves better accuracy than Dijkstra's discrete algorithm in many but not all cases
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.