Abstract

We compared the metapopulation dynamics of predator—prey systems with (1) adaptive global dispersal, (2) adaptive local dispersal, (3) fixed global dispersal and (4) fixed local dispersal by predators. Adaptive dispersal was modelled using the marginal value theorem, such that predators departed patches when the instantaneous rate of prey capture was less than the long-term rate of prey capture averaged over all patches, scaled to the movement time between patches. Adaptive dispersal tended to stabilize metapopulation dynamics in a similar manner to conventional fixed dispersal models, but the temporal dynamics of adaptive dispersal models were more unpredictable than the smooth oscillations of fixed dispersal models. Moreover, fixed and adaptive dispersal models responded differently to spatial variation in patch productivity and the degree of compartmentalization of the system. For both adaptive dispersal and fixed dispersal models, localized (‘stepping-stone’) dispersal was more strongly stabilizing than global (‘island’) dispersal. Variation among predators in the probability of dispersal in relation to local prey density had a strong stabilizing influence on both within-patch and metapopulation dynamics. These results suggest that adaptive space use strategies by predators could have important implications for the dynamics of spatially heterogeneous trophic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.