Abstract

Selective assembly is an effective approach for improving the quality of a product which is composed of two mating components. This article studies optimal partitioning of the dimensional distributions of the components in selective assembly. It extends previous results for squared error loss function to cover general convex loss functions, including asymmetric convex loss functions. Equations for the optimal partition are derived. Assuming that the density function of the dimensional distribution is log-concave, uniqueness of solutions is established and some properties of the optimal partition are shown. Some numerical results compare the optimal partition with some heuristic partitioning schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.