Abstract

The solution of complex system design problems using decomposition-based optimization methods requires determination of appropriate problem partitioning and coordination strategies. Previous optimal partitioning techniques have not addressed the coordination issue explicitly. This article presents a formal approach to simultaneous partitioning and coordination strategy decisions that can provide insights on whether a decomposition-based method will be effective for a given problem. Pareto-optimal solutions are generated to quantify tradeoffs between the sizes of subproblems and coordination problems as measures of the computational costs resulting from different partitioning and coordination strategies. Promising preliminary results with small test problems are presented. The approach is illustrated on an electric water pump design problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.