Abstract

In this paper, we present a novel approach to parametric density estimation from given samples. The samples are treated as a parametric density function by means of a Dirac mixture, which allows for applying analytic optimization techniques. The method is based on minimizing a distance measure between the integral of the approximation function and the empirical cumulative distribution function (EDF) of the given samples, where the EDF is represented by the integral of the Dirac mixture. Since this minimization problem cannot be solved directly in general, a progression technique is applied. Increased performance of the approach in comparison to iterative maximum likelihood approaches is shown in simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.