Abstract
When using modern model-based control concepts in a hot strip rolling mill, an accurate prediction of the roll force is crucial for the achieved control accuracy in terms of the strip thickness. Hence, the influence of various process parameters, e.g., lubrication, on the roll force is of central interest. Commonly used roll gap models are based on the slab method and are often not capable of describing these influences. The hydrodynamic roll gap model, however, can capture the influence of varying friction conditions between the strip and the work rolls. Varying friction conditions can be caused, for instance, by lubrication. This paper presents a combination of the hydrodynamic roll gap model with tailored material models for a more accurate prediction of the roll force in a tandem rolling mill. To parametrize the model, an optimization-based identification algorithm is proposed for unknown friction coefficients and material parameters. The identification algorithm is used on measurement data from an industrial hot strip rolling mill. A comparison with a commonly used roll gap model shows that the parametrized hydrodynamic roll gap model predicts the roll force with significantly higher accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.