Abstract

Clusters of mobile (LEO) satellites, flying at a non-geostationary orbit, have been recently proposed, designed and made operational for achieving a global coverage of roaming users. An example of these is Teledesic. The satellites of these clusters are equipped with a radio frequency switch and connected via intersatellite links to form a specific topology. Uncoordinated packet transmission in these systems may result in collisions. Collided packets must be retransmitted, with an obvious degradation in performance, in terms of both bandwidth usage and delay. This performance degradation can be overcome by a proper scheduling of the packets. In this paper, we consider optimal (namely minimum length) packet scheduling in LEO satellite clusters. We present a preprocessing algorithm which, together with the optimal, polynomial time, packet scheduling algorithm for isolated satellites, produces an optimal schedule in tree-connected clusters. The overall algorithm inherit the time complexity of the optimal one for isolated systems, and is O(N4) for a cluster serving N roaming users.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.